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A s imple  h e a t - t r a n s f e r  a r r a n g e m e n t  enabling the the rma l  conditions a t  the walls  of a dif-  
fusion chamber  to be made periodic in t ime  is descr ibed  and examined analyt ical ly.  Ex-  
tensive  prac t ica l  uses  for the h e a t - t r a n s f e r  scheme in question a r e  foreseen .  

The idea of crea t ing  super sa tu ra t ion  inside a chamber  with wet walls  by subject ing the la t ter  to a 
periodic t e m p e r a t u r e  var ia t ion  was proposed in [1]. An a t t r ac t ive  fea ture  of this technique lay in the pos-  
s ibi l i ty  of achieving the super sa tu ra ted  s ta te  of a v a p o r - g a s  mixture ,  combining constancy in t ime with 
uniformity  in space.  Unti l  recent ly ,  however,  no success  had been achieved in making any appara tus  based 
on this method. The main  r ea s on  for  fa i lure  lay in the complexi ty  of the prac t ica l  p rob lems  involved as well  
as in a lack of knowledge regard ing  the the rmophys ica l  p r o c e s s e s  taking place at  the chamber  walls.  

Let  us f i r s t  of al l  consider  the heat  t r an s f e r  between an infinite plane wall H thick and the surrounding 
medium. Let us a s s u m e  that the heat t r a n s f e r  f r o m  the left-hand side h 1 is m o r e  efficient  that f r o m  the 
r ight  h 2. This co r responds  in par t icular  to the case  in which one side of the wall  is  in contact  with liquid 
and the other with a i r .  Under ord inary  conditions the h e a t - t r a n s f e r  coefficient  for  water  is much g r ea t e r  
than for  a i r  {h i >> th). Let  us a s s um e  that heat sources  a r e  uni formly  dis t r ibuted over  the whole volume 
of the wail,  the intensi ty of these  varying with t ime in accordance  with an a r b i t r a r y  law q(t). Then the equa-  
tion descr ib ing  the change in wall  t e m p e r a t u r e  with t ime  takes the f o r m  

du h q (0 + ~ o, (1) 
dt + H "= c--T nc9 

where  0 is the t e m p e r a t u r e  of the cooling medium; q(t) is a function descr ib ing  the intensi ty  of the volume 
heat  sources  as  a function of t ime. 

Let  us cons ider  the solution of Eq. (1) for  the case  in which heat sources  act  per iodical ly  over  the 
whole volume of the wail in the f o r m  of rec tangu la r  pulses with a period T and an occupation fac tor  of T. 
Phys ica l ly  this cor responds  to the case  in which an e lec t r ic  cur ren t  is passed through the wall  in pulses 
and Joule heat  is r e l eased  per iodical ly  in the volume of the wall. We use  an analyt ical  solution for  q(t) in 
the fo rm of a Four i e r  se r ies :  

q(t) qo ~, -4 -2q~ , ~  sin :~ n~, 2zcn t 
- -  COS . . . . . . . .  . 

n T 
l 

(2) 

After  in tegra t ion of Eq. (1) we shall  have, for  the s t eady-s t a t e  case ,  

Q7 2Q Z s i n  ~ n v  1 cos (r t _  (pn) ' 

u = O - 4 - - ~ - + - ~ - ~  t - V (  h ) u + l " ~ p  (c%)2 

where  Q is  the e lec t r i ca l  power l iberated;  S is the a r ea  of the wall. Here  q(t) = Q(t) /SH. 

(3) 
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We see f rom (3) that the tempera ture  of the wall at  the instant of time under considerat ion is de t e r -  
mined by the tempera ture  of the cooling liquid 0, the tempera ture  displacement (constant in time) cha rac -  
ter ized by the second t e r m  of Eq. (3), and the periodically varying third term. It is c lear ly  desirable to 
achieve conditions under which the amplitude of the third t e rm of the equation may be a maximum. The 
second term,  on the other hand, should be reduced to a minimum, since its presence makes it more  diffi- 
cult to choose the average  wall t empera ture  by specifying the temperature  0. 

It follows f rom Eq. (3) that, in order  to obtain a large amplitude of the tempera ture  fluctuations, it is 
essential  to maximize h/HCp.  This can only be done by reducing the wall thickness H. It is inappropriate 
to increase  h, as this would reduce the amplitude of the fluctuations in temperature .  Hence in designing 
the chamber  it is important  to make H as small  as technically possible. 

We see f rom Eq. (3) that the amplitude of the tempera ture  fluctuations at the wall depends (inter alia) 
upon the frequency ~. As we shall la ter  show, the frequency co is the decisive factor  in obtaining super -  
saturat ion uniform over the whole volume. It is this quantity which controls the rapidity of damping of the 
t empera tu re  and diffusion waves propagating f rom the wall. Let us therefore  consider all possible cases  of 
relat ive ~ values. According to Eq. (3) we may have the following cases:  w >> h/HCp;  ~ << h/HCp;  w ~ h 
/HC~. 

For  a~ >> h /HCp Eq. (3) takes the fo rm 

Q~ 2 Q ' ~  sin n n ~ 1 
u = 0 § ~ -  + - -  �9 _ _  - cos (% t - -  % J .  ( 4 )  

n SHCp ~ n (% 
i 

In this case the amplitude of the , temperature  fluctuations does not depend on h (see (4)) and var ies  in in-  
ve r se  proport ion to w. The second t e rm of the equation depends on h, but in every case it will be much 
grea te r  than the amplitude of the tempera ture  fluctuations. 

Thus in the case under considerat ion we have a large tempera ture  displacement with a re la t ively 
small  amplitude of the tempera ture  fluctuations, i.e., the relat ion between these quantities is unsuitable 
for  working purposes.  However, there is a cer ta in  amount of interest  in this case,  since it enables us to 
va ry  the tempera ture  displacement  of bias (and hence the average tempera ture  in the chamber) by varying 
h for a constant amplitude of the tempera ture  fluctuations. There is then no need to use a thermostat ;  
smooth regulation of the tempera ture  in the chamber  m a y  be achieved by a smooth variat ion of h within 
the l imits of the case under considerat ion (h << a~HCp). 

For  w << h /HCp Eq. (3) takes the fo rm 

u = 0 T ~ - h - - r ~ - ' '  QV , 2 shQ ~ ~ c o s ( c % t - - ~ n  ). (5) 
1 

In Eq. (5) the amplitude does not depend on ~ and is determined, like the tempera ture  displacement,  by the 
hea t - t r ans fe r  coefficient h. The higher the value of h, the lower is the amplitude of the tempera ture  fluctua- 
tions. Hence a re la t ively high value of h /HCp should be obtained by reducing H, avoiding excessive values 
of the coefficient h. However, the thickness of the wall H is limited by strength considerations.  It is pract i -  
cally impossible to use foil thinner than 20 ~. Hence the values of h corresponding to the case in question 
a re  quite high, and this reduces the amplitude of the tempera ture  fluctuations in the wall. This case is 
never theless  also of great  interest ,  since the amplitude of the temperature  fluctuations does not depend on 
~, which is ex t remely  convenient for pract ical  r e s e a r c h  work. It should be noted that, in the case in ques-  
tion, the condition of maximum amplitude of the fluctuations with a minimum temperature  displacement 
may be achieved by suitably choosing the occupation factor 7. We see f rom Eq. (5) that the temperature  u 
depends on the value of 7.  The second te rm in (5) depends on 7 in accordance  with the law sin~rn~/, which 
enables us to use the coefficient 7 in order  to obtain the maximum amplitude of the tempera ture  fluctuations 
at the wall with a minimum displacement  (relative to the tempera ture  0). In order  to determine the 7 for 
which this condition is satisfied, we must  examine the extrema of the difference ([2/~] sin 7r 7 - 7 ) ,  to which 
the difference between the amplitude of the f i r s t  harmonic of the third t e rm and the second term of the 
equation effectively reduces.  The resul tant  value is ~/0 = 0.33. 

Thus for 70 = 0.33 we obtain the maximum possible amplitude of the fluctuations with a minimum 
tempera ture  displacement,  i . e ,  the relat ionship most  suitable for the work in hand. The second t e rm then 
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makes up only 33% of the maximum possible value, whereas the amplitude of the tempera ture  fluctuations 
amounts to 86.6% of this. 

For  w ~ h /HCp Eq. (3) retains its original form. The tempera ture  condition is affected by both w 
and h. However, the optimum working condition may be secured in this case also by once again looking 
for an ext remum of the difference between the amplitude of the f i rs t  harmonic of the change in tempera ture  
(in the third term) and the displacement (the second t e rm of the equation). Let us denote this difference by 
A: 

A =  Q [ 2  sin~, , ]  (6) 
S -  V-(~I-I-C-~i + h ~ h " 

The quantity A depends on many other quantities. However, f rom the point of view of the investigation 
of present  in teres t  we simply re ta in  "/ and h as independent variables ,  regarding  all the other quantities 
as parameters .  Differentiating A(yh) with respec t  to ,/ and h, respect ively,  and equating the resul tant  
expressions to zero,  we obtain a sys tem of equations determining the values of Y0 and h 0" 

2COS ~y __ l__ = O, 
V (o~ HC p)2 + h ~ h 

2sin ~? Y = O. 
Hcp), + h2) + h-V 

(7) 

As a solution to the sys tem of transcendental  equations (7) corresponding to the maximum, we have 
the values Y0 = 0.3 and h 0 = 1.5 wHCp. For  these values we obtain the maximum possible amplitude of 
the tempera ture  fluctuations with a minimum tempera ture  displacement.  The hea t - t ransfer  coefficient h 0 
depends on the frequency w, the wall mater ia l  (Cp), and the wall thickness H. However, as a l ready indi- 
cated, high values of h a re  undesirable,  since they reduce the amplitude of the tempera ture  fluctuations. 
Hence H should be made as small  as possible and -/ = 0 .3no t  too high. The resultant  relat ionships a re  
natural ly essential  when designing the chamber.  

Thus we see that the relat ive value of w (with respec t  to h/HCp) determines  both the tempera ture  
condition at the wall and also its singularit ies.  On the other hand, the quantity co determines  the manner  
in which the tempera ture  and diffusion waves propagating f rom the wall a re  attenuated and hence the de-  
gree  of uniformity of the tempera ture  and of the supersaturat ion in the volume of the chamber.  Hence the 
value of co should be decided on the basis of those conditions which lead to uniformity of tempera ture  and super -  
saturation. 

In order  to determine w we must study the propagation of the tempera ture  and diffusion waves in the 
inner region (in the chamber).  Here we shall confine ourselves to setting out the final resul ts  of an analysis  
of the propagation of the tempera ture  waves, and shall not specifically analyze the diffusion waves, since 
the lat ter  a re  described by completely analogous equations. According to this analysis ,  the attenuation of 
the tempera ture  waves close to the wall, i .e.,  for r ~ r 0 (in the case of a cylindrical  chamber) and subject 
to the condition ~ (w/2a2)r >> 1, is described by the equation 

{V V 
We see f rom (8) that the tempera ture  waves propagating f rom the wall of the chamber  suffer rapid at tenua- 
tion. According to (8) in every  case it is essential  to make ~ (w/2a2)ro as great  as possible. This may be 
achieved both by increasing the frequency w and by increasing the chamber  dimensions r 0. In the case of 
prespecified chamber  dimensions Eq. (8) enables us to determine the value of co necessa ry  to ensure the 
desired attenuation of the waves in the zone next to the wall. The quantity w in turn enables us to find all 
the thermophysical  charac ter i s t ics  needed to ensure a periodic tempera ture  condition at the wall, c o r r e -  
sponding to one of the three cases  considered (co << h /HCp;  w >> h/HCp;  w ~ h /HCp) .  

Let us est imate the period of the tempera ture  fluctuations required in order  to obtain a specified 
degree of uniformity of the tempera ture  in the main volume of the chamber .  Let us assume that the chamber 
wall corresponds  to a cylinder 4.5 cm in diameter ,  l = 25 cm long, made of copper foil H = 20 p thick. 
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TABLE 1. Values of the Coefficient  Y0 and Computing Equations 
for  De te rmin ing  h0, 5, A, Q for  Three  Conditions at  the Wall  

{0 "~o ho 8 A Q 

h 
~ ~ H---C-~-~ 

h 
,o >> n-b-~- p 

h 

0,3 

0,4 

0,33 

1,5 o~HCp 

O, 1 oJHCp 

10 o~HCp 

Q 
o ,o7 ,5~ .T  

, Q 
0,0953 ~-. 

1 Q 
0,0793 ~-. ~ -  

1 Q 
46,5 ~-  �9 -~ -  

1 Q 
8 8 - - "  

1 Q ~,i3,5~-. y 

A~S 

46,5 
A~S 

88 
AhS 

k,315 

We see  f rom Eq. (8) tha t the  manner  in which the t e m p e r a t u r e  waves a t tenuate  c lose  to the wall  is  d e t e r -  
mined by the fac tor  ~ (-~2a---2)'~0 . Let  us spec i fy  the value of this  fac tor  and r e q u i r e  that the t e m p e r a t u r e  
f luctuat ions at  a d i s tance  of 0.5 cm f rom the wall  {i.e., r - r  0 = - 0 . 5 )  should in ampl i tude  not exceed 1% 
of the ampl i tude  of the t e m p e r a t u r e  f luctuat ions a t  the wall  of the chamber .  Then in the case  of a i r  (a 2 

0.18) co = 30.5 and hence the per iod T = 0.2 sec.  If we r e qu i r e  the same damping at a d i s tance  of 1 cm 
f rom the wall  we have co = 7.6 and the per iod T = 0.8 sec.  

Let  us now ca lcu la te  the co r respond ing  va lues  of the h e a t - t r a n s f e r  coeff ic ient  h and the occupation 
f ac to r  y for  these  two examples ,  and a l so  the t e m p e r a t u r e  d i sp lacement ,  the ampl i tude  of the t e m p e r a -  
tu re  f luctuat ions,  and the power r equ i r ed  in o r d e r  to obtain the cor respond ing  t e m p e r a t u r e  condit ions 
at  the wall  of the chamber .  Fo r  both examples  we shal l  cons ider  three  poss ib le  condit ions at  the wall ,  
r e l a t i ng  to the th ree  condit ions just  mentioned. 

Table  1 shows the coeff ic ients  h 0 and Y0 der ived  for  these  condit ions and a l so  the ca lcula t ing  r e l a -  
t ionships  for  de t e rmin ing  the t e m p e r a t u r e  d i sp l acemen t  5, the ampl i tude  of the t e m p e r a t u r e  f luctuat ions A, 
and the power r equ i r ed  Q for  the coppe r - fo i l  wall  H = 20 p thick. Using these r e l a t ionsh ips ,  we may ca[ -  
ca[ate  the effect ive va lues  for  the two examples  under  cons idera t ion .  The r e s u l t s  of the ca lcula t ions  for a l l  
poss ib le  wal l  condit ions a r e  p resen ted  in Table 2. F o r  p rac t i ca l  convenience the values  of 5 and A a r e  
e x p r e s s e d  in t e r m s  of the r a t i o  Q / S  and may  be used for  va r ious  chamber  s i zes .  

Fo r  g r e a t e r  c l a r i t y ,  Table 3 gives the r e s u l t s  of ca lcula t ions  r e l a t ing  to the examples  under con-  
s i de ra t i on  for  a l l  poss ib le  wall  condit ions with S = 350 em 2, using a copper - fo i l  wal l  H = 20 p thick. The 
ampl i tude  of the t e m p e r a t u r e  f luctuat ions is  taken as  5~ for eve ry  case .  

We see  f rom Table 3 that,  if g r e a t e r  spa t i a l  uni formity  is  r equ i red  (co = 30.5), i .e . ,  if the t e m p e r a t u r e  
f luctuat ions a r e  r equ i r ed  to a t tentuate  more  rap id ly ,  not only must  we have higher  values  of the f requency 
co but we mus t  a l so  have a higher  value  of the h e a t - t r a n s f e r  coeff ic ient  h 0. Higher values  of h 0 in turn lead 
to an i n c r e a s e  in the power r equ i r ed  and impose  the i r  own l imi ta t ions  on the cons t ruc t ion  of the s y s t e m  c i r -  
culat ing the cooling liquid. Accord ing  to Table 3, in o r d e r  to achieve a per iod ic  t e m p e r a t u r e  va r i a t i on  with 
an ampl i tude  of 5~ a t  the wall  a t  a f requency of co = 30.5 a cons ide rab ly  g r e a t e r  power is  r equ i r ed  for  eve ry  
one of the working condit ions that  is  r equ i r ed  in the case  of a t e m p e r a t u r e  f luctuat ion at  a f requency of 
co = 7.6 with the same  ampli tude.  F o r  each condit ion a fourfold change in power co r r e sponds  to a fourfold 
change in f requency.  We should t he r e fo re  not use exces s ive  va lues  of co and p resen t  ove r r i go r ous  demands 
for  spa t ia l  uniformity .  

We see  f rom the va lues  given in Table 3 that  for  co >> h / H C p  there  is  a cons ide rab le  t e m p e r a t u r e  
d i sp l acemen t  5 = 33~ for  both examples ,  in a c c o r da nc e  with the foregoing ana lys i s  of this case.  There  
is  a l so  an unfavorable  working r e l a t ionsh ip  between the ampl i tude  of the t e m p e r a t u r e  f luctuat ions (A = 5~ 
and the t e m p e r a t u r e  d i sp l acemen t  (6 = 33~ However,  we see  f rom Table 3 that  the case  under con-  
s i de ra t i on  is e n e r g e t i c a l l y  the mos t  favorable ,  ~nd as  a l r e a d y  indicated enables  us to v a r y  the t e m p e r a t u r e  
d i sp l acemen t  6 and hence the mean t e m p e r a t u r e  in the chamber  by smoothly  vary ing  h for  one pa r t i cu l a r  
ampl i tude  of the t e m p e r a t u r e  f luctuat ions (within the range  h << coHCp). There  is  accord ing ly  no need to 
use  a t he rmos ta t .  These  c h a r a c t e r i s t i c s  of the case  in quest ion na tu ra l ly  make it d e s i r a b l e  to c r e a t e  a p -  
para tus  based on the co r respond ing  pr inc ip les .  

F o r  co << h / H C p  the power r equ i r ed  is  a max imum in both cases .  As shown e a r l i e r  and indicated in 
Table  1, the ampl i tude  of the t e m p e r a t u r e  f luctuat ions is  independent of the f requency co. The p rope r ty  
is  valuable  for  a number  of inves t iga t ions .  However,  unless  spec i f i ca l ly  requ i red ,  this case  is  inconvenient  
f rom the p rac t i ca l  point of view, s ince  i t  is  e n e r g e t i c a l l y  unfavorable ,  as  indicated by the r e s u l t s  p resented  
in Table 3. 
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For  w ~ h / H C p  (as indicated by Table 3) the t e m p e r a t u r e  d i sp lacement  is sma l l  (5 = 3~ for  an 
ampl i tude of A = 5~ However ,  the t e m p e r a t u r e  d i sp lacement  5 cannot be s m a l l e r  than the ampli tude of 
the t e m p e r a t u r e  f luctuations A, and the low values  of 5 shown in Table 3 a r i s e  f r o m  the fact  of d iscarding 
al l  the succeeding ha rmonics  (apart  f r o m  the f irs t)  in the expansion of the t e m p e r a t u r e  fluctuations when 
analyzing Eq. (3). Actual ly in this case  the t e m p e r a t u r e  d i sp lacement  5 will be equal to the ampli tude of 
the t e m p e r a t u r e  f luctuations,  which fac i l i ta tes  the choice and smooth regulat ion of the t e m p e r a t u r e  of the 
cooling liquid. We see f r o m  Table 3 that this case  is energe t ica l ly  acceptable  for  both examples  and is 
both s imple  and convenient.  

It  should be noted that, in view of the c lose  s imi l a r i t y  between the ma themat i ca l  descr ip t ions  of the 
diffusion and heat-conduct ion p roces se s ,  if we can sa t i s fy  the r equ i r emen t  of adequate spat ia l  uni formity  
for  the t e m p e r a t u r e  we au tomat ica l ly  sa t i s fy  the cor responding  r equ i r emen t s  as  to the spat ia l  tmiformity  
of the vapor  p r e s s u r e ,  and hence a lso  the supersa tura t ion .  

u 

t 
H 

p, C 
h 

T 

A 
5 
Q 

r0, r 
A 

a 2 

NOTATION 

is the temperature at the instant of time t; 
is the time; 
is the thickness of wall; 
are the density and specific heat of the wall material; 
is the heat-transfer coefficient between the wall and the cooling medium; 
is the occupation factor; 
are the frequency and period of the oscillations (fluctuations); 
is the amplitude of the temperature fluctuations; 
is the temperature displacement (bias); 
is the power required; 
are the radius of the cylindrical wall of the chamber and the current radius; 
is the difference between the amplitude of the first harmonic of the series describing the time- 
periodic variation in wall temperature (in the third term of (3)) and the temperature displacement 
5 (second term of (3)); 
is the thermal diffusivity. 
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